1. Rimoin DL, C.M., Pyeritz RE, Korf BR, Emery and Rimoinʼs Principles and Practice of Medical Genetics. Fifth ed. Vol. 1. 2007, Pennsylvania: Churchill Livingstone Elsevier.
  2. Curry, C.J., et al., Evaluation of mental retardation: recommendations of a Consensus Conference: American College of Medical Genetics. Am J Med Genet, 1997. ۷۲(۴): p. 468-77.
  3. Shaffer, L.G., American College of Medical Genetics guideline on the cytogenetic evaluation of the individual with developmental delay or mental retardation. Genet Med, 2005. ۷(۹): p. 650-4.
  4. Roeleveld, N., G.A. Zielhuis, and F. Gabreels, The prevalence of mental retardation: a critical review of recent literature. Dev Med Child Neurol, 1997. ۳۹(۲): p. 125-32.
  5. Stromme, P., Aetiology in severe and mild mental retardation: a population-based study of Norwegian children. Dev Med Child Neurol, 2000. ۴۲(۲): p. 76-86.
  6. Satcher, D., The sociodemographic correlates of mental retardation. Am J Public Health, 1995. ۸۵(۳): p. 304-6.
  7. Murphy, C.C., et al., Prevalence of cerebral palsy among ten-year-old children in metropolitan Atlanta, 1985 through 1987. J Pediatr, 1993. ۱۲۳(۵): p. S13-20.
  8. Freeman, J.M. and K.B. Nelson, Intrapartum asphyxia and cerebral palsy. Pediatrics, 1988. ۸۲(۲): p. 240-249.
  9. Moreno-De-Luca, A., D.H. Ledbetter, and C.L. Martin, Genetic [corrected] insights into the causes and classification of [corrected] cerebral palsies. Lancet Neurol. ۱۱(۳): p. 283-92.
  10. Bryson, S.E., Brief report: epidemiology of autism. J Autism Dev Disord, 1996. 26(2): p. 165-7.
  11. Volkmar, F.R., P. Szatmari, and S.S. Sparrow, Sex differences in pervasive developmental disorders. J Autism Dev Disord, 1993. ۲۳(۴): p. 579-91.
  12. Palomares, M., et al., MLPA vs multiprobe FISH: comparison of two methods for the screening of subtelomeric rearrangements in 50 patients with idiopathic mental retardation. Clin Genet, 2006. ۶۹(۳): p. 228-33.
  13. van Karnebeek, C.D., et al., Diagnostic investigations in individuals with mental retardation: a systematic literature review of their usefulness. Eur J Hum Genet, 2005. ۱۳(۱): p. 6-25.
  14. Kriek, M., et al., Diagnosis of genetic abnormalities in developmentally delayed patients: a new strategy combining MLPA and array-CGH. Am J Med Genet A, 2007. ۱۴۳(۶): p. 610-4.
  15. Flint, J., et al., The detection of subtelomeric chromosomal rearrangements in idiopathic mental retardation. Nat Genet, 1995. ۹(۲): p. 132-40.
  16. Ghaffari, S.R., et al., A new strategy for cryptic telomeric translocation screening in patients with idiopathic mental retardation. J Med Genet, 1998. ۳۵(۳): p. 225-33.
  17. Lam, A.C., et al., High rate of detection of subtelomeric aberration by using combined MLPA and subtelomeric FISH approach in patients with moderate to severe mental retardation. Clin Biochem, 2006. ۳۹(۳): p. 196-202.
  18. Monfort, S., et al., Evaluation of MLPA for the detection of cryptic subtelomeric rearrangements. J Lab Clin Med, 2006. ۱۴۷(۶): p. 295-300.
  19. Northrop, E.L., et al., Detection of cryptic subtelomeric chromosome abnormalities and identification of anonymous chromatin using a quantitative multiplex ligation-dependent probe amplification (MLPA) assay. Hum Mutat, 2005. ۲۶(۵): p. 477-86.
  20. Rooms, L., E. Reyniers, and R.F. Kooy, Subtelomeric rearrangements in the mentally retarded: a comparison of detection methods. Hum Mutat, 2005. ۲۵(۶): p. 513-24.
  21. Rooms, L., et al., Subtelomeric deletions detected in patients with idiopathic mental retardation using multiplex ligation-dependent probe amplification (MLPA). Hum Mutat, 2004. 23(1): p. 17-21.
  22. Knight, S.J., et al., Subtle chromosomal rearrangements in children with unexplained mental retardation. Lancet, 1999. ۳۵۴(۹۱۹۱): p. 1676-81.
  23. Anderlid, B.M., et al., Subtelomeric rearrangements detected in patients with idiopathic mental retardation. Am J Med Genet, 2002. ۱۰۷(۴): p. 275-84.
  24. de Vries, B.B., et al., Clinical studies on submicroscopic subtelomeric rearrangements: a checklist. J Med Genet, 2001. ۳۸(۳): p. 145-50.
  25. Schubert, C., The genomic basis of the Williams-Beuren syndrome. Cell Mol Life Sci, 2009. ۶۶(۷): p. 1178-97.
  26. Slavotinek, A.M., Novel microdeletion syndromes detected by chromosome microarrays. Hum Genet, 2008. ۱۲۴(۱): p. 1-17.
  27. Kirchhoff, M., et al., MLPA analysis for a panel of syndromes with mental retardation reveals imbalances in 5.8% of patients with mental retardation and dysmorphic features, including duplications of the Sotos syndrome and Williams-Beuren syndrome regions. Eur J Med Genet, 2007. ۵۰(۱): p. 33-42.
  28. Xiang, B., et al., Genome-wide oligonucleotide array comparative genomic hybridization for etiological diagnosis of mental retardation: a multicenter experience of 1499 clinical cases. J Mol Diagn. ۱۲(۲): p. 204-12.
  29. Bernardini, L., et al., High-resolution SNP arrays in mental retardation diagnostics: how much do we gain? Eur J Hum Genet. ۱۸(۲): p. 178-85.
  30. Ropers, H.H., X-linked mental retardation: many genes for a complex disorder. Curr Opin Genet Dev, 2006. ۱۶(۳): p. 260-9.
  31. Ropers, H.H. and B.C. Hamel, X-linked mental retardation. Nat Rev Genet, 2005. ۶(۱): p. 46-57.
  32. Ropers, H.H., Genetics of early onset cognitive impairment. Annu Rev Genomics Hum Genet, 2010. ۱۱: p. 161-87.
  33. Macherson, Practice Guidelines for molecular diagnosis of Fragile X Syndrome. ۲۰۰۵, clinical molecular genetics society: United Kingdom.
  34. Pembrey, M.E., et al., An assessment of screening strategies for fragile X syndrome in the UK. Health Technol Assess, 2001. ۵(۷): p. 1-95.
  35. Brown, W.T., et al., Fragile X and autism: a multicenter survey. Am J Med Genet, 1986. ۲۳(۱-۲): p. 341-52.
  36. Cohen, I.L., et al., Why are autism and the fragile-X syndrome associated? Conceptual and methodological issues. Am J Hum Genet, 1991. ۴۸(۲): p. 195-202.
  37. McDuffie, A., et al., Autism spectrum disorder in children and adolescents with fragile X syndrome: within-syndrome differences and age-related changes. Am J Intellect Dev Disabil. ۱۱۵(۴): p. 307-26.
  38. McGrew, S.G., et al., Diagnostic Yield of Chromosomal Microarray Analysis in an Autism Primary Care Practice: Which Guidelines to Implement? J Autism Dev Disord.
  39. Hundscheid, R.D., et al., Imprinting effect in premature ovarian failure confined to paternally inherited fragile X premutations. Am J Hum Genet, 2000. ۶۶(۲): p. 413-8.
  40. Murray, A., et al., Studies of FRAXA and FRAXE in women with premature ovarian failure. J Med Genet, 1998. ۳۵(۸): p. 637-40.
  41. Allingham-Hawkins, D.J., et al., Fragile X premutation is a significant risk factor for premature ovarian failure: the International Collaborative POF in Fragile X study–preliminary data. Am J Med Genet, 1999. ۸۳(۴): p. 322-5.
  42. Hagerman, P.J. and R.J. Hagerman, The fragile-X premutation: a maturing perspective. Am J Hum Genet, 2004. ۷۴(۵): p. 805-16.
  43. Hagerman, R.J., et al., Fragile-X-associated tremor/ataxia syndrome (FXTAS) in females with the FMR1 premutation. Am J Hum Genet, 2004. ۷۴(۵): p. 1051-6.
  44. Inlow, J.K. and L.L. Restifo, Molecular and comparative genetics of mental retardation. Genetics, 2004. ۱۶۶(۲): p. 835-81.
  45. Garshasbi, M., et al., A novel nonsense mutation in TUSC3 is responsible for non-syndromic autosomal recessive mental retardation in a consanguineous Iranian family. Am J Med Genet A. ۱۵۵A(۸): p. 1976-80.
  46. Kahrizi, K., et al., Next generation sequencing in a family with autosomal recessive Kahrizi syndrome (OMIM 612713) reveals a homozygous frameshift mutation in SRD5A3. Eur J Hum Genet, 2011. ۱۹(۱): p. 115-7.
  47. Kuss, A.W., et al., Autosomal recessive mental retardation: homozygosity mapping identifies 27 single linkage intervals, at least 14 novel loci and several mutation hotspots. Hum Genet. ۱۲۹(۲): p. 141-8.
  48. Najmabadi, H., et al., Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature. ۴۷۸(۷۳۶۷): p. 57-63.
  49. Hamdan, F.F., et al., De novo SYNGAP1 mutations in nonsyndromic intellectual disability and autism. Biol Psychiatry. ۶۹(۹): p. 898-901.
  50. Hamdan, F.F., et al., Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. Am J Hum Genet. ۸۸(۳): p. 306-16.
  51. Hamdan, F.F., et al., Mutations in SYNGAP1 in autosomal nonsyndromic mental retardation. N Engl J Med, 2009. ۳۶۰(۶): p. 599-605.
  52. Hamdan, F.F., et al., De novo STXBP1 mutations in mental retardation and nonsyndromic epilepsy. Ann Neurol, 2009. ۶۵(۶): p. 748-53.
  53. Vissers, L.E., B.B. de Vries, and J.A. Veltman, Genomic microarrays in mental retardation: from copy number variation to gene, from research to diagnosis. J Med Genet. ۴۷(۵): p. 289-97.
  54. de Ligt, J., et al., Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. ۳۶۷(۲۰): p. 1921-9.
  55. Najmabadi, H., et al., Homozygosity mapping in consanguineous families reveals extreme heterogeneity of non-syndromic autosomal recessive mental retardation and identifies 8 novel gene loci. Hum Genet, 2007. ۱۲۱(۱): p. 43-8.
  56. Rafati, M., et al., “Familial” versus “sporadic” intellectual disability: contribution of subtelomeric rearrangements. Mol Cytogenet. ۵(۱): p. 4.
  57. Rafati, M., et al., Familial Williams-Beuren syndrome ascertained by screening rather than targeted diagnosis. Clin Dysmorphol. ۲۱(۳): p. 118-23.
  58. Rafati, M., et al., “Familial” versus “Sporadic” intellectual disability: contribution of common microdeletion and microduplication syndromes. Mol Cytogenet. ۵(۱): p. 9.
  59. Fu, Y.H., et al., Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell, 1991. ۶۷(۶): p. 1047-58.
  60. Strom, C.M., et al., Development of a novel, accurate, automated, rapid, high-throughput technique suitable for population-based carrier screening for Fragile X syndrome. Genet Med, 2007. ۹(۴): p. 199-207.
  61. Zhou, Y., et al., Robust fragile X (CGG)n genotype classification using a methylation specific triple PCR assay. J Med Genet, 2004. ۴۱(۴): p. e45.
  62. Zhou, Y., et al., Simplified molecular diagnosis of fragile X syndrome by fluorescent methylation-specific PCR and GeneScan analysis. Clin Chem, 2006. ۵۲(۸): p. 1492-500.
  63. Hantash, F.M., et al., Qualitative assessment of FMR1 (CGG)n triplet repeat status in normal, intermediate, premutation, full mutation, and mosaic carriers in both sexes: implications for fragile X syndrome carrier and newborn screening. Genet Med. ۱۲(۳): p. 162-73.
  64. Battaglia, A., E. Bianchini, and J.C. Carey, Diagnostic yield of the comprehensive assessment of developmental delay/mental retardation in an institute of child neuropsychiatry. Am J Med Genet, 1999. 82(1): p. 60-6.
  65. Battaglia, A. and J.C. Carey, Diagnostic evaluation of developmental delay/mental retardation: An overview. Am J Med Genet C Semin Med Genet, 2003. ۱۱۷C(۱): p. 3-14.
  66. Rauch, A., et al., Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. Am J Med Genet A, 2006. ۱۴۰(۱۹): p. 2063-74.
  67. Ahn, J.W., et al., Submicroscopic chromosome imbalance in patients with developmental delay and/or dysmorphism referred specifically for Fragile X testing and karyotype analysis. Mol Cytogenet, 2008. ۱: p. 2.
  68. Aradhya, S., et al., Whole-genome array-CGH identifies novel contiguous gene deletions and duplications associated with developmental delay, mental retardation, and dysmorphic features. Am J Med Genet A, 2007. ۱۴۳A(۱۳): p. 1431-41.
  69. Zahir, F. and J.M. Friedman, The impact of array genomic hybridization on mental retardation research: a review of current technologies and their clinical utility. Clin Genet, 2007. ۷۲(۴): p. 271-87.
  70. Schoumans, J., et al., Detection of chromosomal imbalances in children with idiopathic mental retardation by array based comparative genomic hybridisation (array-CGH). J Med Genet, 2005. ۴۲(۹): p. 699-705.
  71. de Vries, B.B., et al., Diagnostic genome profiling in mental retardation. Am J Hum Genet, 2005. ۷۷(۴): p. 606-16.
  72. Veltman, J.A. and B.B. de Vries, Diagnostic genome profiling: unbiased whole genome or targeted analysis? J Mol Diagn, 2006. ۸(۵): p. 534-7; discussion 537-9.
  73. Edelmann, L. and K. Hirschhorn, Clinical utility of array CGH for the detection of chromosomal imbalances associated with mental retardation and multiple congenital anomalies. Ann N Y Acad Sci, 2009. ۱۱۵۱: p. 157-66.
  74. Stankiewicz, P. and A.L. Beaudet, Use of array CGH in the evaluation of dysmorphology, malformations, developmental delay, and idiopathic mental retardation. Curr Opin Genet Dev, 2007. ۱۷(۳): p. 182-92.
  75. Friedman, J.M., et al., Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation. Am J Hum Genet, 2006. ۷۹(۳): p. 500-13.
  76. Shaikh, T.H., Oligonucleotide arrays for high-resolution analysis of copy number alteration in mental retardation/multiple congenital anomalies. Genet Med, 2007. ۹(۹): p. 617-25.
  77. Koolen, D.A., et al., Genomic microarrays in mental retardation: a practical workflow for diagnostic applications. Hum Mutat, 2009. ۳۰(۳): p. 283-92.
  78. Coulter, M.E., et al., Chromosomal microarray testing influences medical management. Genet Med. ۱۳(۹): p. 770-6.
  79. Hochstenbach, R., et al., Array analysis and karyotyping: workflow consequences based on a retrospective study of 36,325 patients with idiopathic developmental delay in the Netherlands. Eur J Med Genet, 2009. ۵۲(۴): p. 161-9.
  80. Miller, D.T., et al., Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. ۸۶(۵): p. 749-64.
  81. Darvish, H., et al., A clinical and molecular genetic study of 112 Iranian families with primary microcephaly. J Med Genet. ۴۷(۱۲): p. 823-8.
  82. Jensen, L.R., et al., X-linked mental retardation: a comprehensive molecular screen of 47 candidate genes from a 7.4 Mb interval in Xp11. Eur J Hum Genet, 2007. 15(1): p. 68-75.
  83. Ghaffari, S., et al., Familial intellectual disability in an Iranian family with a novel truncating mutation in CEP290. Clin Genet.
  84. Nowakowska, B.A., et al., Parental insertional balanced translocations are an important cause of apparently de novo CNVs in patients with developmental anomalies. Eur J Hum Genet. ۲۰(۲): p. 166-70.
  85.  
  86.  
  87.